Name:	ley	Date:	3
Topic:	V	Class:	

Main Ideas/Questions	Notes/Examples				
PERFECT	The square of an integer is called a perfect square.				
SQUARES	Generate the first 10 perfect squares below:				
	1 ² 2 ² 3 ²	4 ² 5 ² 6 ² 7 16, 25, 36, 4	20 July 2000		
SQUARE ROOTS	 Positive numbers have square roots. 				
	 Why? What number(s) can you square to get 16? 4, -4 Negative numbers have square roots. What number only has one square root? 				
RADICAL NOTATION	• The radical sign , \sqrt{x} , is used to indicate the square root of x . > \sqrt{x} is used to indicate the positive square root of x . > $-\sqrt{x}$ is used to indicate the regative square root of x .				
Examples	Directions: Find each square root.				
C milyness	1. √49	2. √9	3√4- 2		
	4. –√289	5. −√196	6. √484		
	-17	-14:	22		
	7. $\sqrt{\frac{1}{16}}$ $\frac{1}{4}$	8. $-\sqrt{\frac{81}{25}} - \frac{9}{5}$	9. $\sqrt{\frac{49}{144}}$ 7		
DEDEECT VC	Directions: CIRCLE each value that is a perfect square.				

Directions: CIRCLE each value that is a perfect square.

32

50

200

324

If a number is not a perfect square, it's called a non-perfect square.

	Directions: Identify the two	o consecutive integers in v	vhich each square roof lies		
estimating	between.		12. √59		
NON-PERFECT	10. $\sqrt{10}$	11. √115	7 0		
SQUARE ROOTS	3,4	(0, ()	J ₁ 8		
	13. −√41	14. $-\sqrt{3}$	15. −√206		
	-7,06	1-2,-1	-15,-14		
	Directions: Approximate each square root to the nearest tenth.				
	16. √84	17. $-\sqrt{27}$	18. √145		
PERFECT	The cube of an integer is called a perfect cube.				
	Generate the first 10 perfect cubes below:				
CUBES	13 23 23	4^3 5^3 6^3	7 ³ 8 ³ 9 ³ 10 ³		
	1 8 21	64, 125, 26, 3	343 512 729 1000		
CUBE ROOTS	The opposite of cubing a number is finding the Cube root				
CODE KOOTO	all integers have only cube root.				
	> Why? What nu	umber(s) can you cube to	o get 8?		
	> Why? What number(s) can you cube to get 8?				
	• The radical sign, $\sqrt[3]{}$	x , is used to indicate the	cube root of x.		
<i>C 0</i>	Directions: Find each		3/27		
Examples	19. ³ √64	21. ³ √343	21. ³ √−27		
-1	4	1	-3		
1	22. $\sqrt[3]{-1}$	23. ³ √-2,197	24. ³ √512		
	-	-13	8		
	*. *.	, , , ,			
Summary:	T. 4-18-1				
300					
-	,				
			© Gina Wilson (All Things Algebra), 20		

