| Name: | ley | Date: | 3 | |--------|-----|--------|---| | Topic: | V | Class: | | | Main Ideas/Questions | Notes/Examples | | | | | |----------------------|--|---|-----------------------------------|--|--| | PERFECT | The square of an integer is called a perfect square. | | | | | | SQUARES | Generate the first 10 perfect squares below: | | | | | | | 1 ² 2 ² 3 ² | 4 ² 5 ² 6 ² 7
16, 25, 36, 4 | 20 July 2000 | | | | SQUARE ROOTS | Positive numbers have square roots. | | | | | | | Why? What number(s) can you square to get 16? 4, -4 Negative numbers have square roots. What number only has one square root? | | | | | | RADICAL
NOTATION | • The radical sign , \sqrt{x} , is used to indicate the square root of x . > \sqrt{x} is used to indicate the positive square root of x . > $-\sqrt{x}$ is used to indicate the regative square root of x . | | | | | | Examples | Directions: Find each square root. | | | | | | C milyness | 1. √49 | 2. √9 | 3√4- 2 | | | | | 4. –√289 | 5. −√196 | 6. √484 | | | | | -17 | -14: | 22 | | | | | 7. $\sqrt{\frac{1}{16}}$ $\frac{1}{4}$ | 8. $-\sqrt{\frac{81}{25}} - \frac{9}{5}$ | 9. $\sqrt{\frac{49}{144}}$ 7 | | | | DEDEECT VC | Directions: CIRCLE each value that is a perfect square. | | | | | **Directions:** CIRCLE each value that is a perfect square. 32 50 200 324 If a number is not a perfect square, it's called a non-perfect square. | | Directions: Identify the two | o consecutive integers in v | vhich each square roof lies | | | |--------------|--|---------------------------------|--|--|--| | estimating | between. | | 12. √59 | | | | NON-PERFECT | 10. $\sqrt{10}$ | 11. √115 | 7 0 | | | | SQUARE ROOTS | 3,4 | (0, () | J ₁ 8 | | | | | 13. −√41 | 14. $-\sqrt{3}$ | 15. −√206 | | | | | -7,06 | 1-2,-1 | -15,-14 | | | | | Directions: Approximate each square root to the nearest tenth. | | | | | | | 16. √84 | 17. $-\sqrt{27}$ | 18. √145 | | | | | | | | | | | PERFECT | The cube of an integer is called a perfect cube. | | | | | | | Generate the first 10 perfect cubes below: | | | | | | CUBES | 13 23 23 | 4^3 5^3 6^3 | 7 ³ 8 ³ 9 ³ 10 ³ | | | | | 1 8 21 | 64, 125, 26, 3 | 343 512 729 1000 | | | | CUBE ROOTS | The opposite of cubing a number is finding the Cube root | | | | | | CODE KOOTO | all integers have only cube root. | | | | | | | > Why? What nu | umber(s) can you cube to | o get 8? | | | | | > Why? What number(s) can you cube to get 8? | | | | | | | • The radical sign, $\sqrt[3]{}$ | x , is used to indicate the | cube root of x. | | | | <i>C 0</i> | Directions: Find each | | 3/27 | | | | Examples | 19. ³ √64 | 21. ³ √343 | 21. ³ √−27 | | | | -1 | 4 | 1 | -3 | | | | 1 | 22. $\sqrt[3]{-1}$ | 23. ³ √-2,197 | 24. ³ √512 | | | | | - | -13 | 8 | | | | | *. *. | , , , , | | | | | Summary: | T. 4-18-1 | | | | | | 300 | | | | | | | | | | | | | | - | , | | | | | | | | | | | | | | | | © Gina Wilson (All Things Algebra), 20 | | |